Abstract

A series of methane-vented explosions were experimentally investigated in a 4.5 m3 rectangular chamber at P0 = 100 kPa and T0 = 298 K, and the effects of ignition positions and vent areas on the external flame and temperature characteristics were studied. The results indicate that the vent area and ignition position significantly affect external flame and temperature changes. The external flame is portioned into three stages: an external explosion, a violent flame jet with a blue flame, and a yellow flame venting. The temperature peak first rises and then reduces with increasing distance. Rear ignition produces the largest flame lengths and highest temperature, while front ignition leads to the shortest flame and smallest temperature peak. The maximum flame diameter occurs at central ignition. As vent areas increase, the coupling effect of the pressure wave and the internal flame front weakens and the diameter and peak of the high-temperature peak increase. These results can offer scientific guidance for designing disaster prevention measures and evaluating explosion accidents in buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.