Abstract

Experimental data on stability of a three-dimensional supersonic boundary layer on a swept wing are presented. Evolution of artificial wave trains was studied. The experiments were conducted for Mach numberM=2.0 and unit Reynolds numberRe 1=6.6·106m−1 on a swept-wing model with a lenticular profile and a40° sweep angle of the leading edge at zero incidence. Excitation of high-frequency disturbances caused by secondary-flow instability at a high initial amplitude was observed. It is shown that the evolution of disturbances at frequencies of10, 20, and30 kHz is similar to the development of travelling waves for the case of subsonic velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call