Abstract
Mobile jack-up drilling rigs often need to return to a site where a previous installation has left footprints in the seabed. Reinstallation near these depressions is a problematic operation because the jack-up's circular spudcan footings become subjected to eccentric and (or) inclined loading conditions. This can lead to structural failures within the jack-up legs and (or) excessive leg tilt and hull displacement. This paper reports a comprehensive set of geotechnical centrifuge experiments that investigated the effect of footprint geometry on the reinstallation response. Artificial conical shaped footprints were manually cut in the centrifuge sample, ensuring consistent shapes and minimizing any variation of undrained shear strength due to the process of initially installing and retrieving a spudcan. The effect of footprint geometry was thereby isolated. The vertical, horizontal, and moment loads induced on a model footing when penetrated at varying offsets are presented and these provide evidence on the effect of different footprint depths and angles on installation. The footprint geometry governed the horizontal force and moment observed during reinstallation between the level of the touchdown and the footprint toe. Further experimentation has shown that an equivalent skirted footing induced significantly higher horizontal forces (although it can be assumed to be significantly stiffer).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.