Abstract

The functional structure of earthquake-resilient has become a frontier issue in the field of structural seismic performance. For researching the performance of seismic and post-earthquake resilience of earthquake-resilient prefabricated sinusoidal corrugated web beam-column joint (PSCWJ) previously proposed by the author, the low frequency cyclic loading test and the finite element (FE) numerical verification have been carried out on eight specimens in this paper. The hysteretic curve, skeleton curve, strain variation curve, ductility, energy dissipation and other seismic performance indexes of this joint have been obtained. The impact of weakend form, thickness and strength of the flange cover plate (FCP), and the gap between beams on the joint seismic performance as well as the post-earthquake repair performance have been investigated. The results indicate that: the reasonably designed joint does well in bearing capacity, ductility and energy dissipation capability; the quick repair of joint can be realized by installing a new connection device, and the repaired joint can still meet the seismic performance requirements; the FCP weakened by a straight dog-bone profile is better for the joint plastic development and the relocation of plastic hinge at the beam end; the gap properly set between beams can effectively promote the rotation capability of the joint; the yield load of joint is directly decided by the thickness and the strength of the FCP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call