Abstract

Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze-thaw (F-T) cycles. So a multifunctional F-T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F-T cycles. Some significant factors including the F-T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F-T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F-T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F-T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F-T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.