Abstract
Langmuir probe measurements of the temporal behavior of the electron distribution function in a low-pressure inductive discharge are presented. The structure of the measured distribution functions suggests that the loss of high energetic electrons to the wall of the discharge chamber is the main energy loss mechanism. Electron-heavy-particle collisions play only a secondary role for the energy loss. The rapid loss of energetic electrons--while low energy electrons remain confined in the space charge potential field--leads to a fast cooling of the electron distribution function. We also present a simple model to describe the evolution of the mean kinetic energy and plasma potential on the basis of a distribution function that is cutoff at energies above the potential electron energy at the wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.