Abstract
Solar cells, consisting of core-shell p-n junction silicon micropillars on a thin membrane fabricated using soft lithography and metal-assisted chemical etching, are studied as a function of geometrical designs. Significant enhancement in absorption rate is found without much dependence on the pillar diameters in the range of 0.5-2 μm. However, the short-circuit current increases continuously with diameter, which is inversely proportional to the total surface area for a fixed diameter/pitch pillar array. This study provides unambiguous evidence that surface recombination is the dominant loss mechanism in nanowire- or micropillar-based solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.