Abstract

In view of the shortage of structural defect monitoring methods for deep submersibles, numerical simulation and experimental research on underwater SAW propagation based on interdigital transducers are carried out in this paper. PVDF interdigital transducer (PVDF-IDT) has shown considerable potential in the application of structural health monitoring because of its micro size, soft material characteristics, and the characteristics of long-term bonding on the surface of the tested structure. In order to realize the application of IDT on submersible or underwater structures, it is necessary to understand the influence of underwater environment on IDTs with different structures. The underwater attenuation of IDT with 2-5 mm wavelength and the underwater attenuation of Lamb (A0 mode) wave on a 4 mm thick titanium alloy plate is obtained through COMSOL software simulation. The experimental verification shows that the simulation results match with the actual situation, which proves that COMSOL software can accurately calculate the acoustic attenuation of surface waves at the solid-liquid interface. At the same time, the underwater attenuation of IDT with different structures is very different, providing important design parameters for the underwater interdigital transducer. In this paper, it is found that the Lamb wave has significant advantages over the Rayleigh wave in the health monitoring of underwater thin plate structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.