Abstract

In order to study the machining mechanism and process of abrasive flow machining for the titanium alloy artificial joint surface, the abrasive flow machining experimental platform and the curved surface profiling flow channel were established for the machining. The influence of various process parameters (abrasive particle size, abrasive particle concentration, and processing time) and interaction factors on surface roughness and surface micro-topography of the workpiece was quantitatively evaluated through response surface analysis, and a surface roughness prediction model was established. The experimental results show that coverage constraint abrasive flow machining can significantly improve the surface quality of the titanium alloy artificial joint surface, thereby improving the wear resistance and service life of the artificial joint. Using abrasive flow machining with a smaller abrasive particle size and a larger concentration can obtain smaller surface roughness. Under the experimental conditions, the influence of process parameters on the surface roughness is in descending order of processing time, abrasive particle concentration, and abrasive particle size. And the interaction of processing time and abrasive particle size is more effective during processing. The research results can provide the basis for optimizing the flow channel structure for the abrasive flow machining of the titanium alloy artificial joint surface and have a certain guiding significance on the process optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call