Abstract

In order to mix highly viscous fluids with minimal energetic input, a new active in-line mixer has been developed in our previous study (El Omari et al., Phys. Rev. Fluids, 2021 [18]). Based on the principle of mixing by chaotic advection, we present in this paper an experimental characterisation of chaotic mixing of Newtonian fluid flows, at low Reynolds number. First, the flow is characterized using velocity field measurements. Distinct flow topologies are detected in the flow. The trajectories of the fluid particles are computed and show the generation of complex structures in the flow. Residence time distributions reveal that the fluid particles spend more time in the mixer under favorable controlling conditions. Finite size Lyapunov exponents are calculated and indicate that the flow is more chaotic for these conditions. Next, the mixing patterns are visualized and showed that the mixing is more homogeneous under the same favorable conditions for which the fluid particles are sufficiently subjected to the stretching and folding mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.