Abstract

In this work, the effects of orifice internal flow, such as cavitation and hydraulic flip, on the breakup processes of the liquid jet injected perpendicularly into subsonic crossflows were studied experimentally. To provide several conditions for orifice internal flow, different orifice diameters, injection pressure differentials, and shapes (sharp and round) of the orifice entrance were used. Photographs of liquid flow inside the orifice confirmed the internal flow condition. A stroboscopic light was used to measure the liquid column breakup lengths and the liquid column trajectories. The results showed that the liquid column trajectories in noncavitation flows and cavitation flows had a similar trend, but the liquid column trajectories in hydraulic flip flows had different results because the surface of the liquid in the hydraulic flip flows was detached from the inner wall of the orifice hole. As cavitation bubbles developed inside the sharp-edged orifice, the liquid jet became more turbulent and unsteady. Therefore, the liquid column breakup lengths in the cavitation flows were shorter than those in noncavitation flows. In the hydraulic flip, the breakup lengths had smaller values because the liquid jet diameter was smaller than the orifice diameter, and the acceleration waves occurring on the liquid column spread upstream of the orifice exit, then the breakup process on the liquid jet started from the orifice entrance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call