Abstract

Abstract This study addresses the interaction of Cd with natural biofilms of periphytic diatoms grown during different seasons in metal-contaminated and metal-non-contaminated streams, along a tributary of the Lot River, France. Specifically, it aims to test whether the biofilms from contaminated sites have developed a protective mechanism due to high Cd exposure. Towards this goal, reversible adsorption experiments on untreated biofilms were performed in 0.01 M NaNO3 with a pH ranging from 2 to 8, Cd concentration from 0.5 to 10,000 μg/L and exposure time from 1 to 24 h. Two types of experiments, pH-dependent adsorption edge and constant-pH “Langmuirian”-type isotherms were conducted. Results were adequately modeled using a Linear Programming Model. It was found that the adsorption capacities of natural biofilm consortia with respect to Cd do not depend on season and are not directly linked to the growth environment. The biofilms grown in non-contaminated (4.6 ppb Cd in solid) and contaminated (570 ppb Cd in solid) settings exhibit similar adsorption capacities in the Cd concentration range in solution of 100–10,000 μg/L but quite different capacities at low Cd concentration (0.5–100 μg/L); unexpectedly, the non-contaminated biofilm adsorbs approximately 10 times more Cd than the contaminated one. It is therefore possible that the strong low-abundant ligands (for example, phosphoryl or sulfhydryls) are already metal-saturated on surfaces of biofilm grown in the contaminated site whereas these sites are still available for metal adsorption in samples grown in non-contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.