Abstract

The free radical reaction of C2Cl3 with NO2 was investigated by step-scan time-resolved FTIR (TR-FTIR) emission spectroscopy. Due to the vibrationally excited products of Cl2CO, NO, and CO, strong IR emission bands were observed with high resolution TR-FTIR spectra. Four reaction channels forming C2Cl3O+NO, CCl3CO+NO, CO+NO+CCl3, and ClCNO+Cl2CO were elucidated, respectively. Spectral fitting showed that the product CO was highly vibrationally excited with the nascent average vibrational energy of {60.2 kJ/mol}. Possible reaction mechanism via intermediates C2Cl3NO2 and C2Cl3ONO was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.