Abstract
Two-phase air-water bubbly swirling flow through a pipe is a complex turbulent flow and its prediction is still challenging. The present paper describes the experimental investigation of the air-water bubbly swirling flow in vertical co-current flow. Swirling flow is induced by a twisted tape in a 20 mm inner diameter pipe. The flow is investigated using Ultrasonic velocity profiler (UVP), which allows the measurement of liquid and gas velocities simultaneously. Furthermore, simultaneous measurement of void fraction is performed using Wire mesh sensor (WMS). The experimental results reveal that swirling flow has significant impact on bubbles’ distribution. In low liquid flow rate, the average bubble velocity is fairly uniform along the radial position and void fraction increases in the near wall region. However, increasing liquid flow rate at constant gas flow rate leads to increase in void fraction in the core region, this is mainly due to drift velocity which is affected by centrifugal force. Experimental findings and parametric trends based on the effects of swirling flow are summarized and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.