Abstract
DLR Lampoldshausen carried out a cold flow test series to study the boundary layer separation and the related flow field in a truncated ideal contour nozzle. A special focus was set on low nozzle pressure ratios to identify the origin of a locally re-attached flow condition that was detected in previous test campaigns. A convex shaped Mach disc was found for nozzle pressure ratios less than 10 and a slight concave one for nozzle pressure ratios more than 20. Due to boundary layer transition at low nozzle pressure ratios the convex Mach disc is temporary tilted and redirects the flow towards the nozzle wall. A simple separation criterion for turbulent nozzle flows is presented that fits well for both cold and hot flows. It is shown that the oblique separation shock recompresses the flow to 90% of the ambience. The separation zone of the presented film cooled nozzle is compared with a conventional one around 40% longer. Furthermore a relation between shear layer shape and forced side loads is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.