Abstract

The influence of oxidizer dilution in oxy-liquid ethanol flames is experimentally investigated by using a coaxial air-assisted injector positioned in a vertical combustion chamber. This study accounts for the influence of a two-phase mode since two different injector geometries are used: for the first configuration, a vaporization mode is observed at nominal power in oxy conditions, while for the second one, a brush mode is observed. Dilution with air is applied by keeping oxidizer velocity constant. Flame structure is observed through CH emission: dilution leads to an increase in the flame diameter, and collective effects of two-phase combustion are encouraged. The effect of dilution on oxy flame stability is also studied: for a given oxygen mass fraction in the oxidizer, the oxidizer flow rate is increased until extinction occurs. Dilution leads to a less stable flame, which may be essentially explained by the decrease in laminar flame speed with dilution. For high oxidizer dilution levels, the change in flame structure might be another parameter to consider. Finally, species concentrations are measured using a standard gas sampling technique. NO and CO evolutions with dilution are different between both two-phase combustion regimes. An empirical approach based on thermal NO mechanism and CO oxidation reaction enables one to explain the evolutions for brush mode. For vaporization mode, the residence time in burned gases is also to be considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.