Abstract

Damping in turbomachinery blades has been an important parameter in the study of forced response and high-cycle fatigue, but because of its complexity the sources and physical nature of damping are still not fully understood. This is partly due to the lack of published experimental data and supporting analysis of real rotating components. This paper presents the results of a unique experimental method and data analysis study of multiple damping sources seen in actual turbine components operating at engine conditions. The contributions of both aerodynamic and structural damping for several different blade vibration modes, including bending and torsion, were determined. Results of the experiments indicated that aerodynamic damping was a large component of the total damping for all modes. A study of structural damping as a function of rotational speed was also included to show the effect of friction damping at the blade and disk attachment interface. To the best of the authors’ knowledge, the present paper is the first report of independent and simultaneous structural and aerodynamic damping measurement under engine-level rotational speeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call