Abstract

ABSTRACTWe study a reaction-diffusion system within the confines of a thin capillary tube. Xylenol orange and Cr 3+ are introduced into a capillary tube from opposite ends and meet in the middle forming a reaction front. Unequal initial concentrations of the reactants causes the center of the reaction front to move in time. Characteristics of the front such as the width of the reaction zone, w, the position of the center of the front, xf, the global reaction rate, R, and the local reaction rate, r(xf,t) are determined by continuously monitoring the product concentration in space vs. time. We observe crossover of the global rate from classical to non-classical behavior and a splitting of the reaction front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.