Abstract

Reinforced concrete (RC) frames are one of the most commonly used structural systems worldwide. Earthquake actions and progressive collapse caused by accidental local damage are two critical hazards increasing collapse risks of multi-story RC frames. A significant difference is well recognized between the structural seismic design and progressive collapse design. Whilst the seismic design focuses on resisting the lateral forces due to earthquake, the progressive collapse design deals with resisting the unbalanced vertical load induced by a localized failure. Existing research has revealed that considering the two different designs individually for a structure may lead to an undesirable overall structural performance and unnecessary waste of construction materials. In this study, a novel Multi-Hazard Resistant, Prefabricated Concrete (MHRPC) frame system is proposed to satisfy the demands of both structural seismic and progressive collapse designs. Cyclic and progressive collapse tests are conducted to validate the performance of this newly proposed structural system. The mechanisms of the MHRPC frame system under both cyclic loads and a middle column removal scenario are analyzed based on the experimental results and numerical simulations using OpenSees. The results indicate that the proposed fame system exhibits such characteristics as large rotation, low damage, self-centering, and ease of repair. The system is also proven to be able to meet the multi-hazard design requirements of RC frames against both earthquake actions and progressive collapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call