Abstract

Several electrode arrangements have been proposed to enhance the efficiency of insulating materials charging by corona discharge. Recent studies pointed out that the presence of metal strips in the proximity of a dual-type high voltage electrode increases the total current measured at the surface of the collecting electrode, decreases the corona onset voltage value and enlarges the reparation of current density as well. The aim of this paper is to evaluate the benefits of using such an electrode arrangement for corona charging of non-conductive particulate materials in belt-type corona-electrostatic separators. The experimental study was carried out with samples of Aluminum and Polystyrene particles in the size class 125–250 μm. The presence of grounded strips reduces the electric wind, which is associated to corona discharge but not tolerated in such processes that involve micronized materials. At the same time, it improves the corona charging conditions of non-conductive materials and as consequence the overall efficiency of the corona-electrostatic separation process. The use of the new electrode configuration is characterized by both high recovery rates and better purities of the separated products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call