Abstract

A case study of solar collector outdoor test of the experimental technique conducted at Avadi, Chennai. To lower the temperature of solar PV panels, water, and water-based nanofluids were utilized concurrently. Higher cell temperatures restrict the effectiveness of solar PV systems since only a minor amount of power from the sun is gathered as electricity from the energy conversion, and the remaining energy is squandered as heat. The study aimed to develop and build a hybrid collector while also analyzing its electrical and thermal energy performance. The effort was invested in improving the system’s performance; the PVT collector was tested at volume concentrations of two, such as 0.5 and 1.0 L per minute (LPM). The PV/T collector determined thermal efficiency as highest was 48.38 percent and 54.03 percent, respectively, at 0.5 LPM and 1.0 LPM of volume flow rates. The PV/T collector’s highest electrical efficiency was 18.32 percent and 19.35 percent, respectively, for 0.5 LPM and 1.0 LPM of volume flow rates. The results demonstrate that nanofluid has more excellent thermal conductivity than a base fluid with a little change in the fluid viscosity and density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.