Abstract

A low-pressure premixed toluene/O2/Ar flame with the equivalence ratio of 1.90 was investigated using tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Combustion intermediates up to C19H12 were identified by the measurements of the photoionization mass spectrum and photoionization efficiency spectrum. Mole fraction profiles of flame species were evaluated from the scan of burner position at photon energies near ionization thresholds. Furthermore, flame temperature was recorded by a Pt/Pt-13%Rh thermocouple. The comprehensive experimental data concerning the flame structure facilitate the discussion about the flame chemistry of toluene and other monocyclic aromatic fuels. Benzyl and benzene were found to be major primary intermediates of toluene degradation; and benzene is suggested to originate mainly from fuel degradation instead of radical recombination channels in fuel-rich monocyclic aromatic hydrocarbon flames. On the basis of the intermediate identification, comparison...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.