Abstract
The pressure grouting of drilled shaft tips has become popular worldwide due to its effectiveness in mobilizing a larger portion of the available tip resistance under service displacements. This paper presents experimental and numerical studies on the load transfer mechanism and factors controlling the axial response of base grouted drilled shafts in cohesionless soils. The study found that the increased axial capacity of grout-tipped drilled shafts under service loads and displacements depended mainly on preloading effects and the increased tip area provided by the grouting process. A simple prediction approach for estimating the tip capacity of grouted shafts utilizing cone penetration resistance was suggested based on the results of the study. The validity of the proposed approach was verified by the analysis of full-scale case studies of grouted shafts reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.