Abstract

AbstractDue to the global spread of diseases and epidemics, the need to maintain a clean indoor atmosphere has received increasing attention in recent years. Therefore, there will be a need to clearly estimate and define the areas that affect human exposure to pollutants, taking into account the occupied density, which is the primary importance of this research. The capacity of the chilled ceiling combined with mixing ventilation and personal ventilation systems has been studied and compared to the chilled ceiling with mixing ventilation in terms of mean air age, temperature distribution, CO2 concentration, and thermal efficiency, with the best flow rate of the proposed system considering the occupied density in a thermally insulated office room experimentally in the climate of Iraq (Hilla, a hot and dry climate). Twelve tests were performed for four different cooling loads with cooled ceilings (0%, 0.25%, 50%, and 80%), at a constant supply air flow rate with two PV airflow modifiers for three cases. As the cooling load treated by a chilled ceiling increased, the average air temperature increased with height in all cases. The lowest values of average air age appeared in the occupied area in the case of a chilled ceiling with mixing ventilation. This study shows that the chilled ceiling combined with a mixing ventilation and personal ventilation system with a flow rate of 7.5 L/s provides thermal comfort and higher air quality in the occupied area. based on the values of air exchange efficiency and occupants’ air exchange efficiency. As a result, a flow rate of 7.5 L/s is the best option for protecting occupants from direct pollution in the breathing zone and in the surrounding microclimate, because the lower the ventilation rate, the less air is changed for occupants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call