Abstract

Abstract Substantial efforts have been undertaken for visualizing and simulating the characteristics of water movement in wood. However, three-dimensional (3D) thermo-hygric simulations still pose challenges, not only because wood has a heterogeneous microstructure that results in complex computational models but also because there is a lack of proper experimental techniques to support and validate the model constructions. In this study, the moisture distribution in wood during the water adsorption and desorption processes was first visualized using a near-infrared hyperspectral imaging (NIR–HSI) method that has high resolution, sensibility, and stability. Then, based on the moisture visualization results, the main parameters of a mass transfer simulation code were varied. The visualization and simulation results were confirmed to match well with the main characteristics; e.g., drying speed was slower in the wood parts with higher densities. Additionally, there was a relatively large gradient over the surface layer of the wood samples as the drying progressed, whereas this was not an obvious feature in the water adsorption process. Hence, this study proposes that the NIR–HSI method can be combined with thermo-hygric and 3D simulation model construction. Such an approach provides the basis for optimizing drying conditions and providing high-quality wood products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call