Abstract

We have conducted a series of melting experiments in the Fe–C system at pressures up to 25 GPa in the temperature range of 1473–2073 K. The results define the phase relations at several pressures, including the eutectic temperature and composition as a function of pressure, carbon partitioning between solid iron and liquid, and change of melting relations involving iron carbides. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we have established a comprehensive thermodynamic model in the Fe–C binary system. The calculated phase diagrams at pressures of 5, 10, and 20 GPa reproduce the experimental data, including the solubility of carbon in solid iron and the effect of pressure on the eutectic temperature and composition. The formation of Fe7C3 at pressures above 5 GPa is correctly modeled and the change of phase relations in the Fe–C system between 5 and 10 GPa is captured in the model. The model provides predictions of the phase relations at 136 GPa and 330 GPa, based on existing knowledge of the thermochemistry of the system at lower pressure. The calculated phase relations can be used to understand the role of carbon during inner core crystallization, predicting carbon distribution between the inner and outer cores and mineralogy of the solid inner core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call