Abstract

In this work, twenty-four Mn-Dy and Mn-Ho alloys were investigated experimentally using the differential thermal analysis (DTA), scanning electron microscopy (SEM) and electronic probe microanalysis (EPMA) to study phase equilibria of the Mn-Dy and Mn-Ho binary systems. The temperatures of some invariant reactions and liquidus in the Mn-Dy and Mn-Ho binary systems were determined. Based on the experimental results obtained in the present work and the critical evaluation of the experimental data reported in the literature, the Mn-Dy and Mn-Ho binary systems were calculated using the CALPHAD method. In the thermodynamic calculation, the solution phases including liquid, α(Mn), β(Mn), γ(Mn), δ(Mn), α(Dy), β(Dy), α(Ho) and β(Ho), are treated as the substitutional solution model with the Redlich-Kister formula. The intermetallic compounds, Mn2Dy, Mn12Dy, Mn23Dy6, Mn2Ho, Mn12Ho and Mn23Ho6, are modeled as the stoichiometric compounds. Self-consistent thermodynamic parameters were obtained finally to describe the Gibbs energies of various stable phases in the Mn-Dy and Mn-Ho binary systems. The calculated results reproduce well the phase equilibria and thermodynamic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.