Abstract
Experimental data is presented for the flow of bentonite–water dispersions, modeled as Herschel–Bulkley fluids, for the pressure loss at different flow rates covering laminar, transitional and turbulent flow regimes, while flowing in concentric and fully eccentric annuli. The concentric experimental data has been compared with predictions from a recently-introduced model which covers the full flow regimes for concentric annulus, while corrections for eccentricity, previously suggested for non-Newtonian fluids, have also been used to compare with eccentric data. Laminar flow data not only from this work but also from work from the literature is very well predicted while transitional and turbulent flow data are predicted with less accuracy, requiring improvements on predicting transition points. The corrections for eccentricity work well and can be used to accurately correct concentric annulus data. Turbulent non-Newtonian flow data exhibit a power law exponent relationship between flow rate and pressure loss smaller than the Newtonian case pointing out directions for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.