Abstract

Seven full-scale steel fiber reinforced self-consolidating concrete (SFRSCC) beams were tested to study the effects of macro steel fibers on the flexural behavior of reinforced self-consolidating concrete beams. The major test variables are fiber contents and longitudinal reinforcement ratios. The ultimate load, midspan deflections, steel reinforcement strains, crack width and crack spacing were investigated. The enhanced ultimate flexural capacity and reduced midspan deflection due to the addition of steel fibers were observed. With the increasing of fiber contents, the strain in longitudinal reinforcement, crack width and crack spacing decreased significantly. The possibility of using steel fibers for partial replacement of the conventional longitudinal reinforcement is estimated, which is meaningful for extending the structural application of SFRSCC. A method incorporating fiber contribution to the post-cracking tensile strength of concrete in the flexural analysis of SFRSCC beam is also suggested. Comparisons are made between the suggested model and the fib Model Code 2010 model with experimental data. The results showed that the suggested model can estimate ultimate flexural capacity accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.