Abstract

The present work focuses on the study of a bottom-spray fluidized-bed coater in the absence of any liquid (solvent) evaporation. The main objective is to point out and model the effect of operating conditions on the coating efficiency and the coating mass content distribution of particles. A fluidized bed with a bottom-placed spraying nozzle situated in the middle of a perforated distributor plate was used. The experimental results showed that increasing the jet and fluidizing gas flow rates improve the quality of coating, but there is a limitation for the binder flow rate which is dependent on the bed size and jet gas flow rate. Based on the experimental results, an empirical function was derived to predict the coating efficiency in different operating conditions and this function was also used in the mathematical model. Furthermore, a mathematical model was derived based on the population balance equations for two different zones in the bed. The model could predict the coating mass content distribution and the effect of different operating conditions during the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.