Abstract

The test of bond performance of civil composite reinforcement is usually carried out by consolidation drainage triaxial shear test, which involves three aspects: the stress, strength and volume change of cohesive soil. If we want to increase the volume stability of the high-pressure compaction soil, we need to increase the way of reinforcement, but through the way of reinforcement, the shear swelling body of the soil will be reduced, while the shear shrinkage body of the soil will not be reduced or increased. The test pieces used in the experiment are reinforced specimen and plain soil specimen. The biggest difference between them is the axial strain. When the axial strain is low, the reinforced specimen is lower than the strength of plain soil specimen, and the plain soil specimen is slowly higher than the reinforced specimen, which requires the axial strain to increase to a certain extent, which also has the phenomenon that the reinforcement delays the soil strength, which also depends on the number of reinforcement layers and tension of the reinforcement materials with the increase of modulus of elongation, the phenomenon of delay will be more obvious. The peak strength of the soil is controlled by changing the number of layers of reinforcement and the tensile modulus of reinforcement. It shows that with the increase of the number of layers of reinforcement, the peak strength of the soil is increased in a certain range, but once the peak value is exceeded, the peak strength of the soil will not be greatly changed by changing the number of layers of reinforcement, except through by changing the number of reinforcement layers, the residual strength of soil can be controlled by changing the reinforcement material of tensile modulus, so that the stress-strain characteristics of soil will be greatly changed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.