Abstract

Spruce and teak wood as anisotropic materials have complex behavior, particularly in the relationship between strain-rate and strength. High strain-rate compression tests between 590 s-1 and 3300 s-1 were carried out using two types of split Hopkinson pressure bar (SPHB) in order to measure the behavior of the wood along three principal axes with respect to fiber direction and growth rings. Numerical simulation using finite element software of the wood materials under high strain rates was performed and showed results with only a difference of 10% to the experimental results. The strain rate affects the strength of materials. In this case, it follows the power function, which means the higher the strain rate, the stronger the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.