Abstract

Background: High quality 3D printed products are in high demand, resulting in an increase in the production of 3D printed parts with precise tolerances, improved surface roughness, and overall durability. The processing parameters of 3D printers have a significant impact on the quality of 3D printed parts. Three-dimensionally printed parts must be durable, especially in terms of tensile strength, and its impact on the printer's process parameters must be investigated. Methods: Tensile test specimens were printed in the Makerbot 3D printer with aluminium polylactic acid (PLA) material. The three controllable input parameters taken into consideration were layer thickness, infill density and number of shells. The three levels for each of the respective parameters were 0.1mm, 0.2mm and 0.3mm for layer thickness; 2,3 and 4 for number of shells; 20% 40% and 60% for Infill density. Tensile testing was carried out on the specimens and data was tabulated. Using these data, an artificial neural network model was created using Matlab R2021b software’s neural network toolbox (alternatively Scilab can be used). Results: A high layer thickness (0.3mm) and a 40% infill density were found to be the most effective among all other parameters. The specimen with the lowest layer thickness of 0.1mm, four shells, and a 20% infill density had the highest tensile strength. With the tensile test data, a Matlab ANN model was developed. Validation was done by comparing the values obtained from the model with the experimental data by using random layer thickness, infill density, and number of shells. Conclusions: In conclusion, higher layer thickness has lower tensile strengths. However, as the number of shells and infill density increases, the tensile strength increases. In summary an ANN model was successfully developed and validated to predict 3D printed aluminium parts.

Highlights

  • Additive manufacturing processes such as 3D printing are widely used today in many industries. 3D printing has become more widely used in industries, increasing the number of consumers in need of 3D printed products of high quality.[1]

  • A central composite design experimental plan was developed with three influencing input parameters, namely infill density, layer thickness and number of shells

  • Aluminium polylactic acid (PLA) materials were used as a work material

Read more

Summary

Introduction

Additive manufacturing processes such as 3D printing are widely used today in many industries. 3D printing has become more widely used in industries, increasing the number of consumers in need of 3D printed products of high quality.[1]. Despite the fact that 3D printing costs are on the decline, part quality issues such as integrity, strength and aesthetics are still a concern.[2] Because of this, industries have been driven to continuously improve quality control of their products. 3D printing industries rely on these qualities to produce better-looking and more functional parts while saving money by reducing the amount of time needed to manufacture the parts.[3] The parameters that are taken into considerations are layer thickness, infill density and number of shells.[4] The product's tensile strength is a critical factor to take into account. Validation was done by comparing the values obtained from the model with the experimental data by using random layer thickness, infill density, and number of shells. In summary an ANN model was successfully developed and validated to predict 3D printed aluminium parts

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.