Abstract

The present work is aimed toward understanding the effect of flow boiling stability on critical heat flux (CHF) with Refrigerant 123 (R-123) and water in microchannel passages. Experimental data and theoretical model to predict the CHF are the focus of this work. The experimental test section has six parallel microchannels, with each having a cross-sectional area of 1054×157μm2. The effect of flow instabilities in microchannels is investigated using flow restrictors at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena. This technique resulted in successfully stabilizing the flow boiling process. The present experimental CHF results are found to correlate best with existing correlations to overall mean absolute errors (MAEs) of 33.9% and 14.3% with R-123 and water, respectively, when using a macroscale rectangular equation by Katto (1981, “General Features of CHF of Forced Convection Boiling in Uniformly Heated Rectangular Channels,” Int. J. Heat Mass Transfer, 24, pp. 1413–1419). A theoretical analysis of flow boiling phenomena revealed that the ratio of evaporation momentum to surface tension forces is an important parameter. A theoretical CHF model is proposed using these underlying forces to represent CHF mechanism in microchannels, and its correlation agrees with the experimental data with MAE of 2.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.