Abstract

This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient conditions. An LES approach was developed to model fire spreading through a fuel bed with a subgrid scale turbulent combustion model based on a flame surface density concept. By examining two fuel bed slope configurations, it was found that upslope fire spread depends not only on the increased radiant heat transfer but also on the aerodynamic effect created by the interaction of the flame with the inclined surface. Under certain conditions, the convective heat transfer induced by this interaction becomes the dominant mechanism in determining fire spread success. Seventy-three (or 42%) of 173 experimental fires successfully propagated for slopes ranging from −70% to 70%. It was found there exists a critical slope above which fire spread in these live fuel beds was successful, and below which fire spread was unsuccessful. This critical slope for marginal burning varied widely with fuel moisture content and fuel loading. A stepwise logistic regression model was developed from experimental data to predict the probability of successful fire spread. It is expected that this model may be helpful in providing guidelines for prescribed fire application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.