Abstract

INTRODUCTION The conventional aortic valve replacement is the treatment of choice for symptomatic severe aortic stenosis. Transcatheter technique is a viable alternative with promising results for inoperable patients. Sutureless bioprostheses have shown benefits in high-risk patients, such as reduction of aortic clamping and cardiopulmonary bypass, decreasing risks and adverse effects.OBJECTIVEThe objective of this study was to experimentally evaluate the implantation of a novel balloon-expandable aortic valve with sutureless bioprosthesis in sheep and report the early clinical application.METHODSThe bioprosthesis is made of a metal frame and bovine pericardium leaflets, encapsulated in a catheter. The animals underwent left thoracotomy and the cardiopulmonary bypass was established. The sutureless bioprosthesis was deployed to the aortic valve, with 1/3 of the structure on the left ventricular face. Cardiopulmonary bypass, aortic clamping and deployment times were recorded. Echocardiograms were performed before, during and after the surgery. The bioprosthesis was initially implanted in an 85 year-old patient with aortic stenosis and high risk for conventional surgery, EuroSCORE 40 and multiple comorbidities.RESULTSThe sutureless bioprosthesis was rapidly deployed (50-170 seconds; average=95 seconds). The aortic clamping time ranged from 6-10 minutes, average of 7 minutes; the mean cardiopulmonary bypass time was 71 minutes. Bioprostheses were properly positioned without perivalvar leak. In the first operated patient the aortic clamp time was 39 minutes and the patient had good postoperative course.CONCLUSIONThe deployment of the sutureless bioprosthesis was safe and effective, thereby representing a new alternative to conventional surgery or transcatheter in moderate- to high-risk patients with severe aortic stenosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.