Abstract

A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment. Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique. The shock train structure was mostly asymmetrical during self-excited oscillation, regardless of its oscillation mode. We found that the pressure discontinuity caused by background waves was responsible for the asymmetry. On the wall where the pressure at the leading edge of the shock train was lower, a large separation region formed and the shock train deflected toward to the other wall. The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge. The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves. When located in a negative pressure gradient region, the oscillation of the leading edge strengthened; when located in a positive pressure gradient region, the oscillation weakened. To find out the cause of self-excited oscillation, correlation and phase analyses were performed. The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation, regardless of the oscillation mode of the shock train.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.