Abstract

We present experimental results and analyses of an eight-beam five-cavity multiple-beam klystron (MBK) operating at a center frequency of ~3.2 GHz. The device met its performance goals in its first hardware implementation, generating a peak RF output power of 600 kW and a 3-dB bandwidth of ~6%. The circuit was modeled with TESLA, a 2.5-D large-signal klystron/MBK code that was extended to enable simulations of the low- Q multiple-gap cavities used to increase the bandwidth. Details of the model and underlying theory are described, and the simulation results are compared with experimental measurements. The good agreement between the model and the experiment provides a validation for our tools and techniques that will be used in the design of future devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.