Abstract

In the present investigation, the corrosion tendency of mild steel under acidic pH was studied by employing unused expired amiodarone (EAD) drug as a potential corrosion inhibitor by adopting the weight loss measurement method. The corrosion inhibition efficiency (IE) of the formed protective film (EAD) on the steel surface was analyzed using potentiodynamic polarization and AC-impedance spectroscopy studies. The surface morphology of the mild steel before and after corrosion (in 1.0 M HCl) was analyzed via scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDAX), atomic force microscopy (AFM), and thermodynamic studies. The weight loss measurement under different concentrations of EAD indicated that an excellent inhibition was displayed at a concentration of 0.001 M, and the IE was found to depend on both the concentration and molecular structure of EAD. A potentiodynamic polarization study revealed that EAD predominantly acted as a cathode inhibitor, and electrochemical impedance spectroscopy (EIS) confirmed the adsorption of EAD on the surface of mild steel, which obeyed Temkin's adsorption isotherm model. The calculated thermodynamic parameters revealed that adsorption was spontaneous and exothermic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call