Abstract

In this research, experiments were performed to investigate the thermal behaviors such as temperature rise and distributions inside 35 MPa, 150 L hydrogen storage cylinders during its refueling. The main factors affecting the temperature rise in the fast fill process such as the mass filling rate and initial pressure in the cylinder were considered. The experimental results show that the mass filling rate is a constant when the ratio of the pressure in the tank to the cylinder is higher than 1.7, and the mass filling rate decreases when the ratio is lower than 1.7; the temperature inside the cylinder increases nonlinearly in the filling process and the maximum value of temperature rise at the interface of the cylinder exists in the caudal region; the temperature rise reaches a larger value with a lower initial pressure in the cylinder or a higher mass filling rate. Furthermore, the limit of mass filling rate in the case of different ambient temperature was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.