Abstract

This article presents experimental analysis on performance augmentation of a single hole cored brick regenerator using turbulence inducers. Experiments were carried out for different velocities with air as the working fluid for both charging and discharging processes of a 455 mm long aluminum regenerator with inner and outer diameters of 26 mm and 40 mm, respectively. Two numbers of turbulence inducers of 1.5 mm diameter and 13 mm long were placed in ten different combinations and the results were compared with the trials wherein no inducers were used. The mean temperature of the cored brick, exit temperature during discharge, ratio of heat transfer rate to pressure drop, and exergetic efficiencies are the characteristics that were used to study the performance of the regenerator. Placement of inducers increased the mean temperature of the regenerator and the ratio of heat transfer rate to pressure drop by about 15% and a maximum of 40%, respectively, during charging. The exit air temperature during discharge exhibited maximum improvement of 18%. Increased exergetic efficiencies of more than 10% and 5% were estimated for charging and discharging, respectively. It was also observed that the addition of inducers does not necessarily result in an increased performance, and some of the combinations in fact deteriorated the performance of the regenerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.