Abstract

Numerous experimental results on the effective dielectric, pyroelectric and piezoelectric properties and related parameters of piezo-particulate composites based on ferroelectric ceramics are described and analysed. The effective properties of the composites structured by means of dielectrophoresis (0–3 and/or 1–3 connectivity patterns) are compared to the properties of related random (or non-structured) composites with 0–3 connectivity. The influence of the composite microgeometry and properties of the components on the effective properties is discussed. Large values of maximum of the piezoelectric coefficient \(g_{33}^{*}\) describing piezoelectric sensitivity are achieved in the structured composite. The considerable increase of \(g_{33}^{*}\) is a result of forming a porous structure in the polymer matrix of the composite. Examples of the influence of the porous (foam) polymer matrix on the piezoelectric coefficient \(g_{33}^{*}\) are considered for composite based on the ferroelectric PZT ceramic. High-temperature piezo-active composites exhibit thermal stability of both the dielectric and piezoelectric properties in the presence of the ferroelectric ceramic component with the high Curie temperature TC and due to the considerable thermal stability of the dielectric properties of the polymer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.