Abstract

Transient vibrations in mechanical systems are a common problem in engineering. Several theoretical studies have shown analytically and numerically that a vibrating system can be stabilised or its vibrations can be reduced when excited close to a specific parametric combination resonance frequency. At this operation, the transient vibrations are effectively damped by parametric excitation. The basic step in exploiting this method is its experimental implementation in mechanical systems. In this review, recent experiments are discussed for a simple chain mass system, a continuous cantilever and a flexible rotor system. The parametric excitation is realised by electromagnetic variable-stiffness actuators driven by a periodic open-loop control. It is demonstrated experimentally that a parametrically excited structure can exhibit enhanced damping properties. A certain level of the excitation amplitude has to be exceeded to achieve the damping effect in which the existing damping in the system is artificially amplified. Upon exceeding this value, the additional artificial damping provided to the system is significant and most effective for vibration suppression of the lower vibration modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.