Abstract
This paper presents an experimental study of frequency and time domain identification algorithms and discusses their effectiveness in structural health monitoring of frame structures using acceleration input and response data. Three algorithms were considered: 1) a frequency domain decomposition algorithm (FDD), 2) a time domain Observer Kalman IDentification algorithm (OKID), and 3) a subsequent physical parameter identification algorithm (MLK). Through experimental testing of a four-story steel frame model on a uniaxial shake table, the inherent complications of physical instrumentation and testing are explored. Primarily, this study aims to provide a dependable first-order and second-order identification of said test structure in a fully instrumented state. Once the characteristics (i.e. the stiffness matrix) for a benchmark structure have been determined, structural damage can be detected by a change in the identified structural stiffness matrix. This work also analyzes the stability of the identified structural stiffness matrix with respect to fluctuations of input excitation magnitude and frequency content in an experimental setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.