Abstract

Support-induced membrane action can enhance the resistance, while altering the failure pattern, of reinforced concrete (RC) members under static/dynamic loadings. Nevertheless, the membrane effect on the load-response is regarded as a safety factor in current design guides, hence, a thorough understanding of the resistance capability of RC members in the presence of membrane actions is considered essential. To quantitatively depict the membrane behavior and its influence on the blast-resistance and failure pattern of Hybrid Fiber Reinforced-Lightweight Aggregate Concrete (HFR-LWC) beams, a specially built end-constraint clamp is developed to provide membrane actions on the structural component subjected to the blast load simultaneously. A series of field tests are conducted to investigate the dynamic behaviors of the HFR-LWC beams under close-range detonations. Overpressure-time histories of shock waves induced by the close-range explosive charge are captured. Then the deflection-responses and failure modes of the HFR-LWC beams are further investigated. The responses of the clamped HFR-LWC beam under blast loadings can be well simulated, and the blast-resistances of the beam-type members with membrane action are evaluated reasonably. The results show that membrane action is beneficial for the bridging effects of hybrid fibers and the interlocking effects of coarse aggregate, thereby giving rise to the ductile failures of HFR-LWC beam. The maximum deflections of the clamped HFR-LWC beam decrease by about 60% compared with simply-supported HFR-LWC beam in this paper, illustrating that the blast-resistance may be seriously underestimated if the membrane effects are ignored in structural design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.