Abstract
When the casting roller is cooled or heated in the preconditioning chamber the water is supplied to its surface by flat-jet nozzles. The visual inspection of the model of the casting roller showed that a considerable part of it can be covered with the water film spreading from sprinkling zones. It was established that the heat conductivity in the roller body is considered to be a crucial thermal preparation factor in the conjugate heat-exchange problem for the roller of a large diameter at Bio criterion values exceeding 20. Hence, it is sufficient to provide an essential level of the heat transfer that corresponds to the heat transfer coefficient of 2000 W/(m2∙K) to provide appropriate operating conditions for the thermal preparation of the roller. The conditions are also met in sprinkling zones. Due to this fact this scientific paper studies the heat exchange conditions under the water film that spreads between the adjacent sprinkling zones. A range of changes in the flow rate of the spreading water film was determined experimentally. The conditions of heat exchange between the surface of alpha-calorimeter and the water film were analyzed depending on its flow rate and the heat meter surface temperature. A generalized correlation equation was derived. It was established that the heat exchange intensity in sprinkling zones and under the spreading water film meets technological roller treatment conditions in the preconditioning chambers. The obtained research data can be used for the rational arrangement of the collectors and flat-jet nozzles in casting roller preconditioning chambers to reduce the cold and hot water consumption and cut down operating costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: NTU "KhPI" Bulletin: Power and heat engineering processes and equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.