Abstract

In order to study the nature of gas hydrate in porous media, the formation and dissociation processes of methane hydrate in loess were investigated. Five cooling rates were applied to form methane hydrate. The nucleation times of methane hydrate formation at each cooling rate were measured for comparison. The experimental results show that cooling rate is a significant factor affecting the nucleation of methane hydrate and gas conversion. Under the same initial conditions, the faster the cooling rate, the shorter the nucleation time, and the lower the methane gas conversion. Five dissociating temperatures were applied to conduct the dissociation experiment of methane hydrate formed in loess. The experimental results indicated that the temperature evidently controlled the dissociation of methane hydrate in loess and the higher the dissociating temperature, the faster the dissociating rates of methane hydrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.