Abstract

Polyurethane foam (PUF) is actively used for thermal insulation. The main characteristic of thermal insulation is effective thermal conductivity. We studied the effective thermal conductivity of six samples of PUF with different types and sizes of cells. In the course of the research, heat was supplied to the foam using an induction heater in three different positions: above, below, or from the side of the foam. The studies were carried out in the temperature range from 30 to 100 °C. The research results showed that for all positions of the heater, the parameter that makes the greatest contribution to the change in thermal conductivity is the cell size. Two open-cell foam samples of different sizes (d = 3.1 mm and d = 0.725 mm) have thermal conductivity values of 0.0452 and 0.0287 W/m⸱K, respectively, at 50 °C. In the case of similar cell sizes for any position of the heater, the determining factor is the type of cells. Mixed-cell foam (d = 3.28 mm) at 50 °C has a thermal conductivity value of 0.0377 W/m⸱K, and open-cell foam (d = 3.1 mm) at the same temperature has a thermal conductivity value of 0.0452 W/m⸱K. The same foam sample shows different values of effective thermal conductivity when changing the position of the heater. When the heater is located from below the foam, for example, mixed-cell foam (d = 3.4 mm) has higher values of thermal conductivity (0.0446 W/m⸱K), than if the heater is located from above (0.0390 W/m⸱K). There are different values of the effective thermal conductivity in the upper and lower parts of the samples when the heater is located from the side of the foam. At 80 °C the difference is 40% for the open-cell foam (d = 3.1 mm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call