Abstract

The effect of scale on the shear behaviour of joints is studied by performing direct shear tests on different sized replicas cast from various natural joint surfaces. The result show significant scale effects on both the shear strength and deformation characteristics. Scale effects are more pronounced in the case of rough, undulating joint types, whereas they are virtually absent for planar joints. The key factor is the involvement of different asperity sizes in controlling the peak behaviour of different lengths of joints. It is shown that as a results both the joint roughness coefficient (JRC) and the joint compression strength (JCS) reduce with increasing scale. The behaviour of multiple jointed masses with different joint spacing is also considered. It is found that despite unchanged roughness, jointed masses consisting of many small blocks have higher peak shear strength than jointed masses with larger joint spacing. These scale effects are related to the changing stiffness of a rock mass as the block size or joint spacing increases or decreases. Economic methods for obtaining scale-free estimates of shear strength are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.