Abstract

The dynamic strain aging (DSA) phenomenon that occurs in some materials under certain temperature and strain rate conditions can cause plastic strain localization in the form of Portevin-Le Chatelier (PLC) bands. Carbon-manganese steels are used commonly and frequently in construction because of their ductility, low cost and ability to form mechanically. In these steels, the DSA phenomenon occurs for common quasi-static strain rates from 150 to 300°C, which makes band observation complicated. PLC bands on a carbon-manganese steel that was sensitive to DSA were studied using an infrared camera. Specimen heating was achieved using an induction furnace (with an adapted coil inductor), which allows for temperature recording during tensile tests. Thermography with an infrared camera was used to estimate the band characteristics and increments in band plastic strain, which is an important parameter for material behavior identification necessary for DSA phenomenon modeling. This technique had been developed only for PLC phenomenon observation at ambient temperature on aluminum alloys. Band characteristics on the carbon-manganese steels have been compared with results obtained previously on aluminum alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.